
Pattern Recognition

Neural Networks

Back Propagation Learning

Basic Structures of Neural Networks

• The individual neurons that make up a neural network
are interconnected through their synapses.

• These connections allow the neurons to signal each
other as information is processed.

• Each connection is assigned a connection weight. • Each connection is assigned a connection weight.

• If there is no connection between two neurons, then
their connection weight is zero.

• These weights are what determine the output of the
neural network; therefore, the connection weights form
the memory of the neural network.

• Training is the process by which these connection
weights are assigned.

Structure of a Neural Network

Neural Network Training

• Unsupervised training:

– In the unsupervised training, the neural network is

not provided with anticipated outputs.

• Supervised Training• Supervised Training

– The neural network has access to the anticipated

outputs

Structure of a Neuron

Feed-Forward and Back-Propagation

Neural Networks

• Feed-forward describes how the neural

network processes and recalls patterns.

• In a feed-forward neural network, neurons are

only connected foreword. only connected foreword.

• Back-propagation describes how the neural

network is trained.

• Back-propagation is a form of supervised

training.

Back-Propagation Learning

• Notation used:

Xj is the total input to neuron j, Wij is the

weight of ith input, I is the ith input (output of

∑=
i

iijj IWX

weight of ith input, Ii is the ith input (output of

neuron i).

• The output of neuron j is yj=Ф(Xj)

Error Term

• We sent in an input, and it generated, in the

output nodes, a vector of outputs y.

The correct answer is the vector of numbers O.

The error term is: The error term is:

∑ −=
k

kk OyE 2)(
2

1

Error Term

• For the output layer, we can write total error

as a sum of the errors at each node k:

where
∑=

k
kEE

2

1

where
∑

k2

2)(
2

1
kkk OyE −=

The Learning Algorithm

• Variables yk, xk and wjk each only affect the error

at one particular output node k (they only affect

Ek).

So from the point of view of these 3 variables, So from the point of view of these 3 variables,

total error:

• E = (a constant) + (error at node k) hence:

(derivative of total error E with respect to any of

these 3 variables) = 0 + (derivative of error at

node k)

• we can't change yk or xk , but we can change wjk

Partial Derivative (Output Layer)

)(2
2

1
kk

k

Oy
y

E −×=
∂
∂

)1(k yy
EyEE −×∂=∂×∂=∂

)1(kk
kk

k

kk

yy
y

E

x

y

y

E

x

E −×
∂
∂=

∂
∂×

∂
∂=

∂
∂

j
kjk

k

kjk

y
x

E

w

x

x

E

w

E ×
∂
∂=

∂
∂×

∂
∂=

∂
∂

Partial Derivative (Hidden Layer)

∑∑ ×
∂
∂=

∂
∂×

∂
∂=

∂
∂

k
jk

kk j

k

kj

W
x

E

y

x

x

E

y

E

)1(j yy
EyEE −×∂=

∂
×∂=∂

)1(jj
jj

j

jj

yy
y

E

x

y

y

E

x

E −×
∂
∂=

∂
∂

×
∂
∂=

∂
∂

i
jij

j

jij

I
x

E

w

x

x

E

w

E ×
∂
∂=

∂
∂

×
∂
∂=

∂
∂

Changing the Weights to Reduce the

Error
• Initialize connection weights into small random values.

• Present the kth sample input vector and the corresponding

output target to the network.

• For every neuron in every layer, find the output from the

neuron

• Calculate error value for every neuron in every layer in

backward order

• Perform weight adjustment for every connection from neuron

in layer i-1 to every neuron in layer i by :

jik
jikjik w

E
WW

∂
∂+= β

Hill-Climbing/Descending

Hill-Climbing/Descending

• If slope is large then our rule causes us to make large jumps
in the direction that seems to be downhill.

• We do not know this will be downhill. We do not see the
whole landscape. All we do is change the x value and hope
the y value is smaller. It may turn out to have been a jump
uphill. uphill.

• As we approach a minimum, the slope must approach zero
and hence we make smaller jumps. As we get closer to the
minimum, the slope is even closer to zero and so we make
even smaller jumps. Hence the system converges to the
minimum. Change in weights slows down to 0.

• If slope is zero we do not change the weight.

• As long as slope is not zero we will keep changing w. We will
never stop until slope is zero.

Bias (Threshold) Values

• We need thresholds, otherwise the sigmoid

function is centered at zero

• Update input to a neuron as:

)1)((−+=∑ j
i

iijj tIWX

Principal Component Analysis

• Large dimension of the feature space reduces the

efficiency of pattern recognition systems.

• The correlation between features does not allow a

simple selection of features with smaller rate of simple selection of features with smaller rate of

recognition (classification) errors

• Principal Component Analysis (PCA) converts set

of observations of possibly correlated variables

into a set of values of linearly uncorrelated

variables

Eigenvectors and Eigenvalues

• An eigenvector of a square matrix is a non-zero

vector that, when multiplied by the matrix, yields a

vector that differs from the original at most by a

multiplicative scalar.

Principal Component Analysis

• PCA is mathematically defined as an

orthogonal linear transformation that

transforms the data to a new coordinate

systemsystem

• PCA is a powerful tool for analyzing data.

Applying PCA to Data

• Get data (Feature extraction)

• Subtract the mean (zero mean data)

• Calculate the covariance matrix for data

• Calculate the eigenvectors and eigenvalues of • Calculate the eigenvectors and eigenvalues of

the covariance matrix

• Choose components and form a transform

matrix

• Deriving the new data set

Sample Data

Plotting Data

Covariance, Eigenvectors, and

Eigenvalues

Forming the Transform Matrix

• Transform Matrix = (eig1, eig2, …, eign)

Transform Data

• Obtain the final data by:

Transformed_Data = Transform_Matrix x Zero_Mean_Data

Questions?

