
Pattern Recognition

Neural Networks

Back Propagation Learning



Basic Structures of Neural Networks

• The individual neurons that make up a neural network 
are interconnected through their synapses. 

• These connections allow the neurons to signal each 
other as information is processed. 

• Each connection is assigned a connection weight. • Each connection is assigned a connection weight. 

• If there is no connection between two neurons, then 
their connection weight is zero. 

• These weights are what determine the output of the 
neural network; therefore, the connection weights form 
the memory of the neural network.  

• Training is  the  process  by  which  these  connection  
weights  are  assigned.



Structure of a Neural Network



Neural Network Training

• Unsupervised training:  

– In the unsupervised training, the neural network is 

not provided with anticipated outputs. 

• Supervised Training• Supervised Training

– The neural network has access to the anticipated 

outputs



Structure of a Neuron



Feed-Forward and Back-Propagation 

Neural Networks

• Feed-forward describes how the neural 

network processes and recalls patterns. 

• In a feed-forward neural network, neurons are 

only connected foreword. only connected foreword. 

• Back-propagation describes how the neural 

network is trained.  

• Back-propagation is a form of supervised 

training. 



Back-Propagation Learning

• Notation used:

Xj is the total input to neuron j, Wij is the 

weight of ith input, I is the ith input (output of 
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weight of ith input, Ii is the ith input (output of 

neuron i). 

• The output of neuron j is yj=Ф(Xj)



Error Term

• We sent in an input, and it generated, in the 

output nodes, a vector of outputs y. 

The correct answer is the vector of numbers O. 

The error term is: The error term is: 
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Error Term

• For the output layer, we can write total error 

as a sum of the errors at each node k:

where 
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The Learning Algorithm

• Variables yk, xk and wjk each only affect the error 

at one particular output node k (they only affect 

Ek). 

So from the point of view of these 3 variables, So from the point of view of these 3 variables, 

total error: 

• E = (a constant) + (error at node k) hence: 

(derivative of total error E with respect to any of 

these 3 variables) = 0 + (derivative of error at 

node k)

• we can't change yk or xk , but we can change wjk



Partial Derivative (Output Layer)
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Partial Derivative (Hidden Layer)
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Changing the Weights to Reduce the 

Error
• Initialize connection weights into small random values.

• Present the kth sample input vector and the corresponding 

output target to the network.

• For every neuron in every layer, find the output from the 

neuron

• Calculate error value for every neuron in every layer in 

backward order

• Perform weight adjustment for every connection from neuron 

in layer i-1 to every neuron in layer i by : 
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Hill-Climbing/Descending



Hill-Climbing/Descending

• If slope is large then our rule causes us to make large jumps 
in the direction that seems to be downhill. 

• We do not know this will be downhill. We do not see the 
whole landscape. All we do is change the x value and hope 
the y value is smaller. It may turn out to have been a jump 
uphill. uphill. 

• As we approach a minimum, the slope must approach zero 
and hence we make smaller jumps. As we get closer to the 
minimum, the slope is even closer to zero and so we make 
even smaller jumps. Hence the system converges to the 
minimum. Change in weights slows down to 0. 

• If slope is zero we do not change the weight. 

• As long as slope is not zero we will keep changing w. We will 
never stop until slope is zero. 



Bias (Threshold) Values

• We need thresholds, otherwise the sigmoid 

function is centered at zero

• Update input to a neuron as:
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Principal Component Analysis

• Large dimension of the feature space reduces the 

efficiency of pattern recognition systems.

• The correlation between features does not allow a 

simple selection of features with smaller rate of simple selection of features with smaller rate of 

recognition (classification) errors

• Principal Component Analysis (PCA) converts set 

of observations of possibly correlated variables 

into a set of values of linearly uncorrelated 

variables



Eigenvectors and Eigenvalues

• An eigenvector of a square matrix is a non-zero 

vector that, when multiplied by the matrix, yields a 

vector that differs from the original at most by a 

multiplicative scalar.



Principal Component Analysis

• PCA is mathematically defined as an 

orthogonal linear transformation that 

transforms the data to a new coordinate 

systemsystem

• PCA is a powerful tool for analyzing data.



Applying PCA to Data

• Get data (Feature extraction)

• Subtract the mean (zero mean data)

• Calculate the covariance matrix for data

• Calculate the eigenvectors and eigenvalues of • Calculate the eigenvectors and eigenvalues of 

the covariance matrix

• Choose components and form a transform 

matrix

• Deriving the new data set



Sample Data



Plotting Data



Covariance, Eigenvectors, and 

Eigenvalues





Forming the Transform Matrix

• Transform Matrix = (eig1, eig2, …, eign)



Transform Data

• Obtain the final data by:

Transformed_Data = Transform_Matrix x Zero_Mean_Data





Questions?


