
Pattern Recognition 

K-Nearest Neighbor 

Linear Discriminant Functions 



k-Nearest Neighbors Classifier 

• The kn nearest neighbor (KNN) density 
estimate is given by: 

 

 

 

• Vn is the volume of the smallest possible x 
centered cell that contains kn training samples, 
and n is the total number of training samples 



K-Nearest Neighbor Example 

 



Disadvantages 

• The distance to all sample points should be 
computed at each classification. This 
computation can be very time consuming 

• The accuracy of the k-NN algorithm can be 
severely degraded by the presence of noisy or 
irrelevant features. 



Optimizing K Parameter 

• 1-NNR versus k-NNR 

– The use of large values of k has two main 
advantages 

• Yields smoother decision regions 

• Provides probabilistic information; The ratio of examples 
for each class gives information about the ambiguity of 
the decision 

– However, too large values of k are harmful;  They 
destroy the locality of the estimation since farther 
examples are taken into account 

– In addition, it increases the computational burden 



Example  



Distance Metrics 

Requirements for a distance metric: 

1.  L(a, b) ≥ 0 

2.  L(a, b) = 0 if and only if a = b. 

3.  L(a, b) = L(b, a) 

4.  L(a, b) + L(b, c) ≥ L(a, c). 



Sample Distance Metrics 

• Euclidean metric 

 

• Minkowski metrics 

 

• L-infinity metric 

 

• Mahalanobis-distance 



Disadvantages  

• The distance to all sample points should be 
computed at each classification. This 
computation can be very time consuming 

• The accuracy of the k-NN algorithm can be 
severely degraded by the presence of noisy or 
irrelevant features. 



Improving KNN Classifier 
• Classify all the examples in the training set and 

remove those examples that are misclassified, in an 
attempt to separate classification regions by 
removing ambiguous points 

• The opposite alternative is to remove training 
examples that are classified correctly, in an attempt 
to define the boundaries between classes by 
eliminating points in the interior of the regions 

• A different alternative is to reduce the training 
examples to a set of prototypes that are 
representative of the underlying data.  

• [The issue of selecting prototypes will be the 
subject of the lectures on clustering] 



Example 

 



Improving KNN Search Algorithm 

Bucketing 

• In the Bucketing algorithm, the space is divided into 
identical cells and for each cell the data points 
inside it are stored in a list. The cells are examined 
in order of increasing distance from the query point 
and for each cell the distance is computed between 
its internal data points and the query point 

• The search terminates when the distance from the 
query point to the cell exceeds the distance to the 
closest point already visited 



Improving KNN Search Algorithm 

k-d trees 
•  A k-d tree is a generalization of a binary search tree in high 

dimensions. Each internal node in a k-d tree is associated with a 
hyper-rectangle and a hyper-plane orthogonal to one of the 
coordinate axis 

• The hyper-plane splits the hyper-rectangle into two parts, which are 
associated with the child nodes 

• The partitioning process goes on until the number of data points in the 
hyper-rectangle falls below some given threshold 

• The effect of a k-d tree is to partition the (multi-dimensional) sample 
space according to the underlying distribution of the data, the 
partitioning being finer in regions where the density of pints is higher 

• For a given query point, the algorithm works by first descending the 
tree to find the data points lying in the cell that contains the query 
point 

• Then it examines surrounding cells if they overlap the ball centered at 
the query point and the closest data point so far 
 



K-d Tree Example 

 



Discriminant Function 

• For each class, there exists a discriminant 
function gi , i = 1, . . . , c whose input is a 
feature vector x. The sample identified by the 
feature vector x is assigned to ωi if 

 

 

    for all j = 1, . . . , c and i ≠ j 



Linear Classifiers 

• A discriminant function is said to be linear if it can 
written as:  

 

 

    where  wi =  [wi1 , . . . , wid ]T is  the  weight vector  
and  the  scalar  wi0 is  threshold weight 

 

    The classifier relying only on the linear discriminant 
functions is called linear classifier 



Example: Linear Classifier 



Linearly Separable Training Samples 

    If there exists a linear classifier that classifies 
all the training samples correctly, i.e. 

 

     g(x1j ) > 0,       for all j = 1, . . . , n1 and 

     g(x2j ) < 0        for all j = 1, . . . , n2 

 

    Then we say that the training sets/samples D1 
and D2 are linearly separable. 



Linearly Inseparable Sets (Example)  



Non-Linear Classification (Example 2) 



Non-Linear Classification (Example 1) 



Fisher Linear Classifier 

• Problem definition: Classification based on 
thresholding in feature space cannot separate 
classes in many cases. 

• Instead on mapping feature values on the 
feature vector axes, a different line can be 
used (Linear classification is assumed) 



Fisher Linear Classifier 

 



Fisher Linear Classifier 



Fisher Linear Classifier 

 



Fisher Linear Classifier 

 



Reducing Feature Space Dimension 

• Feature selection methods find a subset of the 
original features or attributes.  

• In some cases, data analysis such can be done in 
the reduced space more accurately than in the 
original space. 

• Curse of dimensionality reduces the accuracy of 
the classifier 

• Dimension reduction can be done once. 
• Adaptive dimension reduction combines 

unsupervised learning  with dimension reduction 
adaptively. 
 



Questions? 

 


