Pattern Recognition

Non-Parametric Methods for
Estimating Probability Density
Functions



Classification Problem (Review)

* The classification problem is to assign an
arbitrary feature vector x € F to one of c classes.

* The classifier is a function from the feature space
onto the set of classes,

a:F>{w,,...,w.}. (a(x)isthe classifier)



Classification Problem

e Feature vectors x that we aim to classify
belong to the feature space F.

 The task is to assign an arbitrary feature
vector x € F to one of the c classes

e We know the
— 1. prior probabilities P (w, ), ..., P (w.) of the
classes and

— 2. the class conditional probability density
functions p(x | w,), ..., px | w,).



Probability Density Function

* A probability density function (pdf), or
density of a continuous random variable, is a
function that describes the relative likelihood
for this random variable to take on a given
value.



Probability Densities




Estimating Class Conditional
PDFs and a-Priori Probabilities

n practice, PDFs and a-priori probabilities are not
<nown.

PDFs and a-priori probabilities are estimated
from training samples. (Supervised learning)

We assume that the training samples are
occurrences of the independent random
variables. (Thatis: they were measured from
different objects.)

These random variables are assumed to be
distributed according to p(x|w,). (independent
and identically distributed (i.i.d.)).




Training Data Types

e Mixture Sampling: A set of objects are
randomly selected, their feature vectors are
computed and then the objects are hand-
classified to the most appropriate classes.

e Separate Sampling: The training data for each
class is collected separately.



Estimating a-Priori Probabilities

* For the classifier training, the difference of
the two sampling techniques is:

based on the mixed sampling we can deduce

the a-priori probabilities P (w,), . . ., P (w,) as:
(%
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Parametric Estimation of PDFs

e If we assume that p(x|w;) belongs to some
family of parametric distributions, the class
conditional pdfs p(x|w,) is reduced to the
estimation of the parameter vector 6.

* For example, we can assume that p(x|w,) is a
normal density with unknown parameters

6. =(w,Z).



Maximum Likelihood Estimation

 The aim is to estimate the value of the
parameter vector 0 based on the training
samplesD={x,,..., X, }.

 We assume that the training samples are
occurrences of i.i.d. random variables
distributed according to the density p(x|98).



Maximum Likelihood Estimation

e The maximum likelihood estimate or the ML
estimate 6’ maximizes the probability of the
training data with respect to 6. Due to the
I.i.d. assumption, the probability of D is

p(D|f) = Hg;[}:;‘ﬂ}.
=1



Non-Parametric Estimation of Density
Functions

e Often assuming class conditional pdfs to be
members of a certain parametric family is not
reasonable.

e |nstead, we must estimate the class conditional
pdfs non-parametrically.

* |n non-parametric estimation (or density
estimation), we try to estimate p(x|w,) in each
point X whereas in parametric estimation we tried
to estimate some unknown parameter vector.



Density Estimation Problem

 We are given the trainingdataD={x,, ..., X, },
where the samples are i.i.d. , and are all drawn
from the unknown density p(x).

e The aim is to find an estimate p”(x) for p(x) in
every point x.



Histogram

 Histograms are the simplest approach to
density estimation.

 The feature space is divided into m equal sized
cells or bins B. .

e Then, the number of the training samples
n.,i=1,...nfalling into each cell is
computed.



Histogram

e The density estimate is

p(x) = —, when x € B;

V is the volume of the cell
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General Formulation of Density
Estimation

e We are interested in how to select a suitable

cell size/shape at the proximity of x, to produce
an accurate p”(x).

e To estimate p”(x) at the point x and using the
set (neighborhood) B surrounding x, the

probability that a certain training sample x; is in
Bis

P = /Bp(x)dx.



General Formulation of Density
Estimation

 We need: Probability that k out of n training
samples fall into the set B

 Assuming: The training samples are independent,
and each of them is in the set B with the
probability P



General Formulation of Density
Estimation

 The probability that there are exactly k
samples in the set B is:

P, = ( z ) PF(1 — P)»*,




General Formulation of Density
Estimation

 The expected value of k is:

mn

E[k] = Z kP, = Z ( z - } ) P11 - P)"*nP =nP.
k=0 I

k=



General Formulation of Density
Estimation

e Replacing E[k] with k™, an estimate for P is:

P =k/n.



General Formulation of Density
Estimation

e |f p(x) is continuous and B is small enough
/p(x)dx ~ p(x)V,
B

where V is the volume of B



Conclusion

The obtained density estimate is a space
averaged version of the true density.

The smaller the volume V the more accurate
the estimate is.

However, if n is fixed, diminishing V will lead
sooner or later to B which does not contain
any training samples and the density estimate
will become useless.

The principal question is how to select B and V



Parzan Window

e Assume: region B_ is a d-dimensional
hypercube. If h_is the length of the side of
the hypercube, its volume is given by V, = h 9.

* Define a function that returns value 1 inside
the hypercube centered at the origin, and
value O outside the hypercube:



Parzan Window

I it |u <1/2
%’J(U)z{ ‘,ll—/

0 otherwise

e If x.is inside the hypercube: ¢((x—xi)/h,) =1
* If x, is outside the hypercube: »((x — x;)/h,) = 0



Parzan Window

 The density estimate becomes:




Parzen Estimates

 The Parzen-window density estimate at x using

n training samples and the window function ¢
is defined by:

1 v 1 X — X;
P09 = 13 o)

1=1

e Each training sample is contributing to the
estimate in accordance with its distance from x



Parzen Estimates

e Using the normal density as window function:

p(u) = Wexp[—U.SuTu]
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Disadvantage

e Every classification with Parzen classifiers
requires n evaluations of a pdf, where n is the
total number of training samples.



k-Nearest Neighbors Classifier

 The design of Parzen classification involves
selecting window functions and suitable
window widths.

 One possibility is to let them depend on the
training data.

* This means fixing k, and computing of suitable
(small enough) V, based on the selected k...



k-Nearest Neighbors Classifier

e To estimate p(x):

— Place the center of the cell B, at the test point x
and let the cell grow until it encircles k,, training
samples.

— These k, training samples are k, nearest
neighbors of x. Here, k_ is a given parameter.



k-Nearest Neighbors Classifier

* The k, nearest neighbor (KNN) density
estimate is given by:

k.,
n\X | = )
Pn(X) = 37

e V_isthe volume of the smallest possible x
centered cell that contains k  training
samples, and n is the total number of training
samples



K-Nearest Neighbor Example



Disadvantages

 The distance to all sample points should be
computed at each classification. This
computation can be very time consuming

 The accuracy of the k-NN algorithm can be

severely degraded by the presence of noisy or
irrelevant features.



Questions?



