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Classification Problem (Review)

• The classification problem is to assign an 

arbitrary feature vector x ∈ F to one of c classes.

• The classifier is a function from the feature space 

∈

• The classifier is a function from the feature space 

onto the set of classes,                                               

α : F → { ω1 , . . . , ωc } .   (α(x) is the classifier)



Classification Problem

• Feature vectors x that we aim to classify 
belong to the feature space F.

• The task is to assign an arbitrary feature 
vector x ∈ F to one of the c classes vector x ∈ F to one of the c classes 

• We know the

– 1.  prior probabilities P (ω1 ), . . . , P (ωc ) of the 
classes and

– 2.  the class conditional probability density 
functions p(x | ω1 ), . . . , p(x | ωc ).



Probability Density Function

• A probability density function (pdf), or 

density of a continuous random variable, is a 

function that describes the relative likelihood 

for this random variable to take on a given for this random variable to take on a given 

value.



Probability Densities



Estimating Class Conditional

PDFs and a-Priori Probabilities

• In practice, PDFs and a-priori probabilities are not 
known.

• PDFs and a-priori probabilities are estimated 
from training samples. (Supervised learning)

We assume that the training samples are • We assume that the training samples are 
occurrences of the independent random 
variables.   (That is:  they were measured from 
different objects.) 

• These random variables are assumed to be 
distributed according to p(x|ωi).  (independent 
and identically distributed (i.i.d.)).



Training Data Types

• Mixture Sampling:  A set of objects are 

randomly selected, their feature vectors are 

computed and then the objects are hand-

classified to the most appropriate classes.classified to the most appropriate classes.

• Separate Sampling: The training data for each 

class is collected separately. 



Estimating a-Priori Probabilities

• For the classifier training, the difference of 

the two sampling techniques is:

based on the mixed sampling we can deduce 

the a-priori probabilities P (ω ), . . . , P (ω ) as:the a-priori probabilities P (ω1), . . . , P (ωc) as:



Parametric Estimation of PDFs

• If we  assume that p(x|ωi) belongs to some 

family of parametric distributions, the class 

conditional pdfs p(x|ωi) is reduced to the 

estimation of the parameter vector θiestimation of the parameter vector θi

• For example, we can assume that p(x|ωi) is a 

normal density with unknown parameters       

θi = (µi , Σi ).



Maximum Likelihood Estimation

• The aim is to estimate the value of the 

parameter vector θ based on the training 

samples D = { x1 , . . . , xn } .

• We assume that the training samples are • We assume that the training samples are 

occurrences of i.i.d. random variables 

distributed according to the density p(x|θ).



Maximum Likelihood Estimation

• The maximum likelihood estimate or the ML 

estimate θ’ maximizes the probability of the 

training data with respect to θ. Due to the 

i.i.d. assumption, the probability of D isi.i.d. assumption, the probability of D is



Non-Parametric Estimation of Density 

Functions

• Often assuming class conditional pdfs to be 
members of a certain parametric family is not 
reasonable.

• Instead, we must estimate the class conditional • Instead, we must estimate the class conditional 
pdfs non-parametrically.

• In non-parametric estimation (or density 
estimation), we try to estimate p(x|ωi) in each 
point x whereas in parametric estimation we tried 
to estimate some unknown parameter vector.



Density Estimation Problem

• We are given the training data D = { x1 , . . . , xn }, 

where the samples are i.i.d. , and are all drawn 

from the unknown density p(x). 

• The aim is to find an estimate p^(x) for p(x) in 

every point x.



Histogram

• Histograms are the simplest approach to 

density estimation.

• The feature space is divided into m equal sized 

cells or bins B . cells or bins Bi . 

• Then, the number of the training samples 

ni , i = 1, . . . n falling into each cell is 

computed.  



Histogram

• The density estimate is

V  is the volume of the cellV  is the volume of the cell



Histogram



General Formulation of Density 

Estimation

• We are interested in how to select a suitable 

cell size/shape at the proximity of x, to produce 

an accurate pˆ(x).  

• To estimate pˆ(x) at the point x and using the • To estimate pˆ(x) at the point x and using the 

set (neighborhood) B surrounding x,  the 

probability that a certain training sample xj is in 

B is



General Formulation of Density 

Estimation

• We need: Probability that k out of n training 

samples fall into the set B

• Assuming: The training samples are independent, • Assuming: The training samples are independent, 

and each of them is in the set B with the 

probability P 



General Formulation of Density 

Estimation

• The probability that there are exactly k 

samples in the set B is:



General Formulation of Density 

Estimation

• The expected value of k is:



General Formulation of Density 

Estimation

• Replacing E[k] with kˆ, an estimate for P is:



General Formulation of Density 

Estimation

• If p(x) is continuous and B is small enough

where V is the volume of B



Conclusion

• The obtained density estimate is a space 

averaged version of the true density.

• The smaller the volume V  the more accurate 

the estimate is. the estimate is. 

• However, if n is fixed, diminishing V  will lead 

sooner or later to B which does not contain 

any training samples and the density estimate 

will become useless.

• The principal question is how to select B and V 



Parzan Window

• Assume: region Bn is a d-dimensional 

hypercube.  If hn is the length of the side of 

the hypercube, its volume is given by Vn = hn
d .

• Define a function that returns value 1 inside 

the hypercube centered at the origin, and 

value 0 outside the hypercube:



Parzan Window

• If xi is inside the hypercube:

• If xi is outside the hypercube:



Parzan Window

• The density estimate becomes:



Parzen Estimates

• The Parzen-window density estimate at x using 

n training samples and the window function ϕ

is defined by:

• Each training sample is contributing to the 

estimate in accordance with its distance from x



Parzen Estimates

• Using the normal density as window function:



Disadvantage

• Every classification with Parzen classifiers 

requires n evaluations of a pdf, where n is the 

total number of training samples.



k-Nearest Neighbors Classifier

• The design of Parzen classification involves 

selecting window functions and suitable 

window widths.

• One possibility is to let them depend on the • One possibility is to let them depend on the 

training data. 

• This means fixing kn and computing of suitable 

(small enough) Vn based on the selected kn.



k-Nearest Neighbors Classifier

• To estimate p(x):

– Place the center of the cell Bn at the test point x 

and let the cell grow until it encircles kn training 

samples.samples.

– These kn training samples are kn nearest 

neighbors of x. Here, kn is a given parameter. 



k-Nearest Neighbors Classifier

• The kn nearest neighbor (KNN) density 
estimate is given by:

• Vn is the volume of the smallest possible x 
centered cell that contains k n training 
samples, and n is the total number of training 
samples



K-Nearest Neighbor Example



Disadvantages

• The distance to all sample points should be 

computed at each classification. This 

computation can be very time consuming

• The accuracy of the k-NN algorithm can be • The accuracy of the k-NN algorithm can be 

severely degraded by the presence of noisy or 

irrelevant features.



Questions?Questions?


