
Pattern Recognition

Parameter Estimation of Probability 

Density Functions



Classification Problem (Review)

• The classification problem is to assign an 

arbitrary feature vector x ∈ F to one of c classes. 

• The classifier is a function from the feature space 

onto the set of classes,                                               

∈

onto the set of classes,                                               

α : F → { ω1 , . . . , ωc } .   (α(x) is the classifier)

• The parts of the feature space corresponding to 

classes ω1 , . . . , ωc are denoted by R1 , . . . , Rc



Classification Problem

• Feature vectors x that we aim to classify 
belong to the feature space F.

• The task is to assign an arbitrary feature 
vector x ∈ F to one of the c classes vector x ∈ F to one of the c classes 

• We know the

– 1.  prior probabilities P (ω1 ), . . . , P (ωc ) of the 
classes and

– 2.  the class conditional probability density 
functions p(x | ω1 ), . . . , p(x | ωc ).



The Bayes classification rule (for two classes M=2)

� Given classify it according to the rule

� Equivalently:  classify according to the rule 
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� For equiprobable classes the test becomes

)()()()()( 2211 ωωωω PxpPxp ><

)()()( 21 ωω xPxp ><



Probability Density Function

• A probability density function (pdf), or 

density of a continuous random variable, is a 

function that describes the relative likelihood 

for this random variable to take on a given for this random variable to take on a given 

value.



Probability Densities



Cumulative Distribution Function

• Cumulative distribution function (CDF), or 

just distribution function, describes the 

probability that a real-valued random variable 

X with a given probability distribution will be X with a given probability distribution will be 

found at a value less than or equal to x.



The Gaussian Distribution



Gaussian Mean and Variance



Estimating Class Conditional

PDFs and a-Priori Probabilities

• In practice, PDFs and a-priori probabilities are not 
known.

• PDFs and a-priori probabilities are estimated 
from training samples. (Supervised learning)

We assume that the training samples are • We assume that the training samples are 
occurrences of the independent random 
variables.   (That is:  they were measured from 
different objects.) 

• These random variables are assumed to be 
distributed according to p(x|ωi).  (independent 
and identically distributed (i.i.d.)).



Training Data Types

• Mixture Sampling:  A set of objects are 

randomly selected, their feature vectors are 

computed and then the objects are hand-

classified to the most appropriate classes.classified to the most appropriate classes.

• Separate Sampling: The training data for each 

class is collected separately. 



Estimating a-Priori Probabilities

• For the classifier training, the difference of 

the two sampling techniques is:

based on the mixed sampling we can deduce 

the a-priori probabilities P (ω ), . . . , P (ω ) as:the a-priori probabilities P (ω1), . . . , P (ωc) as:



Parametric Estimation of PDFs

• If we  assume that p(x|ωi) belongs to some 

family of parametric distributions, the class 

conditional pdfs p(x|ωi) is reduced to the 

estimation of the parameter vector θiestimation of the parameter vector θi

• For example, we can assume that p(x|ωi) is a 

normal density with unknown parameters 

θi = (µi , Σi ).



Most Common PDF 

• Normal distribution: Related to real-valued 

quantities that grow linearly (e.g. errors, 

offsets)



Normal Distribution



Log-normal distribution

• Related to positive real-valued quantities that 

grow exponentially



Log-Normal Distribution



Uniform distribution (discrete)

• Related to real-valued quantities that are 

assumed to be uniformly distributed over a 

(possibly unknown) region



Binomial Distribution

• The binomial distribution is the discrete probability 

distribution of the number of successes in a sequence of 

n independent yes/no experiments, each of which yields 

success with probability p



Maximum Likelihood Estimation

• The aim is to estimate the value of the 

parameter vector θ based on the training 

samples D = { x1 , . . . , xn } .

• We assume that the training samples are • We assume that the training samples are 

occurrences of i.i.d. random variables 

distributed according to the density p(x|θ).



Maximum Likelihood Estimation

• The maximum likelihood estimate or the ML 

estimate θ’ maximizes the probability of the 

training data with respect to θ. Due to the 

i.i.d. assumption, the probability of D isi.i.d. assumption, the probability of D is



Finding ML-Estimate

• Derive the gradient of the likelihood function 

or the log-likelihood function

• Solve the zeros of the gradient and search also 

all the other critical points of the likelihood all the other critical points of the likelihood 

function. (e.g. the points where at least one of 

the partial derivatives of the function are not 

defined are critical in addition to the points 

where gradient is zero.)



Finding ML-Estimate

• Evaluate the likelihood function at the critical 

points and select the critical point with the 

highest likelihood value as the estimate.

• warning: the ML-estimate does not • warning: the ML-estimate does not 

necessarily exist for all distributions, for 

example the likelihood function could grow 

without limit.



ML-estimates for the Normal Density

• ML-estimates for the normal density

• Assuming covariance is fixed and known we • Assuming covariance is fixed and known we 

have:



ML-estimates for the Normal Density

• The gradient is:

• Setting gradient equal to zero we have:• Setting gradient equal to zero we have:



ML-estimates for the Normal Density

• ML estimation for covariance is given by:



Numeric Example



Example

• Assume we have three classes of objects,

• Feature vector has 4 elements <f1,f2,f3,f4>,

• A-priori probabilities are equal = 1/3

• Pdfs have Normal distribution• Pdfs have Normal distribution



Example

• Sample data for the first class:



Example

• μ = < 4.8600 ,  3.3100 , 1.4500 ,  0.2200>

• ∑ = [                                                        ]• ∑ = [                                                        ]



Example

• For class two :

• μ=<6.1000  , 2.8700,  4.3700 , 1.3800>

• ∑=[                                                            ]



Example

• For class three:

• μ=< 6.5700 , 2.9400 , 5.7700 , 2.0400 >

• ∑=[                                                      ]



Classifying a Sample Input

• Input:  x = [ 5.9   4.2   3.0   1.5 ]T   

• Finding the value of

• The input is classified as a member of class 2• The input is classified as a member of class 2

• Repeat this example with some more sample 

inputs



Questions?Questions?


