Pattern Recognition

Introduction to Probability
Bayes Decision Theory

Review

- Features: These are measurable quantities obtained from the patterns, and the classification task is based on their respective values.
- Feature vectors: A number of feature values $\left\langle x_{1}, x_{2}, . ., x_{n}\right\rangle$ constitute the feature vector
- Feature vectors are treated as random vectors.
- A random variable is a variable whose value is subject to variations due to chance and it can take on a set of possible different values, each with an associated probability.

Review

- The classifier consists of a set of functions, whose values, computed at \underline{X}^{\prime} determine the class to which the corresponding pattern belongs

Classification Based on Bayes Decision Theory

- Statistical nature of feature vectors

$$
\underline{x}=\left[x_{1}, x_{2}, \ldots, x_{l}\right]^{T}
$$

- Assign the pattern represented by feature vector \underline{x} to the most probable of the available classes

$$
\omega_{1}, \omega_{2}, \ldots, \omega_{M}
$$

That is $\quad \underline{x} \rightarrow \omega_{i}: \underset{\text { maximum }}{P\left(\omega_{i} \mid \underline{x}\right)}$

Probability Theory

Marginal Probability

$$
p\left(X=x_{i}\right)=\frac{c_{i}}{N} .
$$

Joint Probability

$$
p\left(X=x_{i}, Y=y_{j}\right)=\frac{n_{i j}}{N}
$$

Conditional Probability $p\left(Y=y_{j} \mid X=x_{i}\right)=\frac{n_{i j}}{c_{i}}$

Probability Theory

Sum Rule

$$
\begin{array}{r}
p\left(X=x_{i}\right)=\frac{c_{i}}{N}=\frac{1}{N} \sum_{j=1}^{L} n_{i j} \\
=\sum_{j=1}^{L} p\left(X=x_{i}, Y=y_{j}\right)
\end{array}
$$

Product Rule

$$
\begin{aligned}
p\left(X=x_{i}, Y=y_{j}\right) & =\frac{n_{i j}}{N}=\frac{n_{i j}}{c_{i}} \cdot \frac{c_{i}}{N} \\
& =p\left(Y=y_{j} \mid X=x_{i}\right) p\left(X=x_{i}\right)
\end{aligned}
$$

The Rules of Probability

Sum Rule

$$
p(X)=\sum_{Y} p(X, Y)
$$

Product Rule

$$
p(X, Y)=p(Y \mid X) p(X)
$$

Example

- A jar contains 10 black and 10 white marbles. Two marbles are chosen without replacement. What is the probability of drawing a white marble and then a black one?
$P(x=$ white,$y=$ black $)=P(y \mid x) \cdot P(x)=(10 / 19)(1 / 2)$

Example

- A jar contains black and white marbles. Two marbles are chosen without replacement. The probability of selecting a black marble and then a white marble is 0.34 , and the probability of selecting a black marble on the first draw is 0.47 . What is the probability of selecting a white marble on the second draw, given that the first marble drawn was black?
- $P(x=$ black, $y=w h i t e)=0.34=p(y \mid x) . p(x)$
- $\mathrm{P}(\mathrm{y} \mid \mathrm{x})=0.72$

Independent probability

- If two events, A and B are independent then the joint probability is

$$
P(A \text { and } B)=P(A) \cdot P(B)
$$

a-posteriori probabilities

- The a-posteriori probability is the probability of the parameter T given the evidence $\mathrm{p}(\mathrm{x} \mid \mathrm{T})$
- Example: Suppose there is a box of marbles with 60% of them being square and 40% being round. The round marbles are either black or white in equal numbers; the square marbles are all black. An observer sees a (random) marble from a distance; all the observer can see is that this marble is black. What is the probability this marble is round?

a-posteriori probabilities

- a-priori probabilities $\quad P\left(\omega_{1}\right), P\left(\omega_{2}\right) \ldots, P\left(\omega_{M}\right)$

Then

$$
p\left(\underline{x} \mid \omega_{i}\right), i=1,2 \ldots M
$$

- This is also known as the likelihood \underline{X} with respect to $\boldsymbol{\omega}_{i}$.

Bayes' Theorem

$$
\begin{aligned}
p(Y \mid X) & =\frac{p(X \mid Y) p(Y)}{p(X)} \\
p(X) & =\sum_{Y} p(X \mid Y) p(Y)
\end{aligned}
$$

a-posterior \propto likelihood \times prior

Example

- Suppose there is a box of marbles with 60% of them being square and 40% being round. The round marbles are either black or white in equal numbers; the square marbles are all black. An observer sees a (random) marble from a distance; all the observer can see is that this marble is black. What is the probability this marble is round?
- $P($ round $)=0.4$
- P(black|round)=0.5
- P(black)=p(black|round).p(round) + $p($ black \mid square $) . p($ square $)=0.5 * 0.4+1 * 0.6=0.8$
- P(round|black)=(p(black|round).p(round))/P(black)
- $0.5 \times 0.4 / 0.8=0.25$

The Bayes classification rule (for two classes $M=2$)

$>$ Given \underline{X} classify it according to the rule

$$
\begin{aligned}
& \text { If } P\left(\omega_{1} \mid \underline{x}\right)>P\left(\omega_{2} \mid \underline{x}\right) \underline{x} \rightarrow \omega_{1} \\
& \text { If } P\left(\omega_{2} \mid \underline{x}\right)>P\left(\omega_{1} \mid \underline{x}\right) \underline{x} \rightarrow \omega_{2}
\end{aligned}
$$

$>$ Equivalently: classify \underline{x} according to the rule

$$
p\left(\underline{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)(><) p\left(\underline{x} \mid \omega_{2}\right) P\left(\omega_{2}\right)
$$

>For equiprobable classes the test becomes

$$
p\left(\underline{x} \mid \omega_{1}\right)(><) P\left(\underline{x} \mid \omega_{2}\right)
$$

Probability Density Function

- A probability density function (pdf), or density of a continuous random variable, is a function that describes the relative likelihood for this random variable to take on a given value.

Probability Densities

Cumulative Distribution Function

- Cumulative distribution function (CDF), or just distribution function, describes the probability that a real-valued random variable X with a given probability distribution will be found at a value less than or equal to x.

Expectations

$$
\begin{array}{ll}
\mathbb{E}[f]=\sum_{x} p(x) f(x) & \mathbb{E}[f]=\int p(x) f(x) \mathrm{d} x \\
\mathbb{E}_{x}[f \mid y]=\sum_{x} p(x \mid y) f(x) & \begin{array}{l}
\text { Conditional Expectation } \\
\text { (discrete) }
\end{array} \\
\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right) & \begin{array}{l}
\text { Approximate Expectation } \\
\text { (discrete and continuous) }
\end{array}
\end{array}
$$

