Pattern Recognition

Introduction to Probability
Bayes Decision Theory

Topics

- Definitions (Review)
- Classification Based on Bayes Decision Theory
- Probability Theory
- Bayes'Theorem

Review

- Features: These are measurable quantities obtained from the patterns, and the classification task is based on their respective values.
- Feature vectors: A number of feature values $\left.<_{x_{1}, x_{2}, . ., x_{n}}\right\rangle$ constitute the feature vector
- Feature vectors are treated as random vectors.
- A random variable is a variable whose value is subject to variations due to chance and it can take on a set of possible different values, each with an associated probability.

Review

- The classifier consists of a set of functions, whose values, computed at \underline{X} determine the class to which the corresponding pattern belongs

Classification Based on Bayes Decision Theory

- Statistical nature of feature vectors

$$
\underline{x}=\left[x_{1}, x_{2}, \ldots, x_{l}\right]^{T}
$$

- Assign the pattern represented by feature vector \underline{X} to the most probable of the available classes

$$
\omega_{1}, \omega_{2}, \ldots, \omega_{M}
$$

That is $\quad \underline{x} \rightarrow \omega_{i}: P\left(\underset{\text { maxim }}{\omega_{i} \left\lvert\, \frac{x}{u m}\right.}\right)$

Probability Theory

Marginal Probability

$$
p\left(X=x_{i}\right)=\frac{c_{i}}{N}
$$

Joint Probability

$$
p\left(X=x_{i}, Y=y_{j}\right)=\frac{n_{i j}}{N}
$$

Conditional Probability

$$
p\left(Y=y_{j} \mid X=x_{i}\right)=\frac{n_{i j}}{c_{i}}
$$

Probability Theory

Sum Rule

$$
\begin{array}{r}
p\left(X=x_{i}\right)=\frac{c_{i}}{N}=\frac{1}{N} \sum_{j=1}^{L} n_{i j} \\
=\sum_{j=1}^{L} p\left(X=x_{i}, Y=y_{j}\right)
\end{array}
$$

Product Rule

$$
\begin{aligned}
p\left(X=x_{i}, Y=y_{j}\right) & =\frac{n_{i j}}{N}=\frac{n_{i j}}{c_{i}} \cdot \frac{c_{i}}{N} \\
& =p\left(Y=y_{j} \mid X=x_{i}\right) p\left(X=x_{i}\right)
\end{aligned}
$$

The Rules of Probability

Sum Rule

$$
p(X)=\sum_{Y} p(X, Y)
$$

Product Rule

$$
p(X, Y)=p(Y \mid X) p(X)
$$

Example

- A jar contains 10 black and 10 white marbles. Two marbles are chosen without replacement. What is the probability of drawing a white marble and then a black one?

$$
\mathrm{P}(\mathrm{x}=\text { white }, \mathrm{y}=\text { black })=\mathrm{P}(\mathrm{y} \mid \mathrm{x}) \cdot \mathrm{P}(\mathrm{x})=(10 / 19)(1 / 2)
$$

Example

- A jar contains black and white marbles. Two marbles are chosen without replacement. The probability of selecting a black marble and then a white marble is 0.34 , and the probability of selecting a black marble on the first draw is 0.47 . What is the probability of selecting a white marble on the second draw, given that the first marble drawn was black?
- $P(x=$ black, $y=$ white $)=0.34=p(y \mid x) \cdot p(x)$
- $\mathrm{P}(\mathrm{y} \mid \mathrm{x})=0.72$

Independent probability

- If two events, A and B are independent then the joint probability is

$$
\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B})
$$

a-posteriori probabilities

- The a-posteriori probability is the probability of the parameter x given the evidence T and is shown as : $\mathrm{p}(\mathrm{x} \mid \mathrm{T})$
- a-priori probability of an uncertain quantity x is the probability distribution that would express one's uncertainty about x before some evidence is taken into account.

Bayes' Theorem

$$
\begin{aligned}
p(Y \mid X) & =\frac{p(X \mid Y) p(Y)}{p(X)} \\
p(X) & =\sum_{Y} p(X \mid Y) p(Y)
\end{aligned}
$$

Example

- Suppose there is a box of marbles with 60% of them being square and 40% being round. The round marbles are either black or white in equal numbers; the square marbles are all black. An observer sees a (random) marble from a distance; all the observer can see is that this marble is black. What is the probability this marble is round?
- $\mathrm{P}($ round $)=0.4$
- $\mathrm{P}($ black \mid round $)=0.5$
- $\mathrm{P}($ black $)=\mathrm{p}($ black \mid round $) . \mathrm{p}($ round $)+\mathrm{p}($ black \mid square $) . p($ square $)$ $=0.5 * 0.4+1 * 0.6=0.8$
- $P($ round \mid black $)=(p($ black \mid round $) \cdot p($ round $)) / P($ black $)$
- $0.5 x 0.4 / 0.8=0.25$

The Bayes' classification rule (for two classes $M=2$)
$>$ Given $\underline{\mathcal{X}}$ classify it according to the rule

$$
\begin{aligned}
& \text { If } P\left(\omega_{1} \mid \underline{x}\right)>P\left(\omega_{2} \mid \underline{x}\right) \underline{x} \rightarrow \omega_{1} \\
& \text { If } P\left(\omega_{2} \mid \underline{x}\right)>P\left(\omega_{1} \mid \underline{x}\right) \underline{x} \rightarrow \omega_{2}
\end{aligned}
$$

$>$ Equivalently: classify $\underline{\mathcal{X}} \quad$ according to the rule

$$
p\left(\underline{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)(><) p\left(\underline{x} \mid \omega_{2}\right) P\left(\omega_{2}\right)
$$

$>$ For equi-probable classes the test becomes

$$
p\left(\underline{x} \mid \omega_{1}\right)(><) P\left(\underline{x} \mid \omega_{2}\right)
$$

Probability Density Function

- A probability density function (pdf), or density of a continuous random variable, is a function that describes the relative likelihood for this random variable to take on a given value.

Probability Densities

Cumulative Distribution Function

- Cumulative distribution function (CDF), or just distribution function, describes the probability that a real-valued random variable X with a given probability distribution will be found at a value less than or equal to x.

Expectations

$$
\begin{array}{ll}
\mathbb{E}[f]=\sum_{x} p(x) f(x) & \mathbb{E}[f]=\int p(x) f(x) \mathrm{d} x \\
\mathbb{E}_{x}[f \mid y]=\sum_{x} p(x \mid y) f(x) & \begin{array}{l}
\text { Conditional Expectation } \\
\text { (discrete) }
\end{array} \\
\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right) & \begin{array}{l}
\text { Approximate Expectation } \\
\text { (discrete and continuous) }
\end{array}
\end{array}
$$

Variances and Covariances

$$
\begin{aligned}
& \operatorname{var}[f]=\mathbb{E}\left[(f(x)-\mathbb{E}[f(x)])^{2}\right]=\mathbb{E}\left[f(x)^{2}\right]-\mathbb{E}[f(x)]^{2} \\
& \operatorname{cov}[x, y]=\mathbb{E}_{x, y}[\{x-\mathbb{E}[x]\}\{y-\mathbb{E}[y]\}] \\
&=\mathbb{E}_{x, y}[x y]-\mathbb{E}[x] \mathbb{E}[y] \\
& \operatorname{cov}[\mathbf{x}, \mathbf{y}]=\mathbb{E}_{\mathbf{x}, \mathbf{y}}\left[\{\mathbf{x}-\mathbb{E}[\mathbf{x}]\}\left\{\mathbf{y}^{\mathrm{T}}-\mathbb{E}\left[\mathbf{y}^{\mathrm{T}}\right]\right\}\right] \\
&=\mathbb{E}_{\mathbf{x}, \mathbf{y}}\left[\mathbf{x} \mathbf{y}^{\mathrm{T}}\right]-\mathbb{E}[\mathbf{x}] \mathbb{E}\left[\mathbf{y}^{\mathrm{T}}\right]
\end{aligned}
$$

The Gaussian Distribution

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}
$$

Gaussian Mean and Variance

$$
\begin{aligned}
\mathbb{E}[x] & =\int_{-\infty}^{\infty} \mathcal{N}\left(x \mid \mu, \sigma^{2}\right) x \mathrm{~d} x=\mu \\
\mathbb{E}\left[x^{2}\right] & =\int_{-\infty}^{\infty} \mathcal{N}\left(x \mid \mu, \sigma^{2}\right) x^{2} \mathrm{~d} x=\mu^{2}+\sigma^{2} \\
\operatorname{var}[x] & =\mathbb{E}\left[x^{2}\right]-\mathbb{E}[x]^{2}=\sigma^{2}
\end{aligned}
$$

The Multivariate Gaussian

$$
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

Questions?

